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Abstract

We compare parametric and nonparametric estimation methods in the context of PBPK

modeling using simulation studies. We implement a Monte Carlo Markov Chain simulation

technique in the parametric method, and a functional analytical approach to estimate the

probability distribution function directly in the nonparametric method. The simulation

results suggest an advantage for the parametric method when the underlying model can

capture the true population distribution. On the other hand, our calculations demonstrate

some advantages for a nonparametric approach since it is a more cautious (and hence safer)

way to assess the distribution when one does not have sufficient knowledge to assume a

population distribution form or parametrization. The parametric approach has obvious ad-

vantages when one has significant a priori information on the distributions sought, although

when used in the nonparametric method, prior information can also significantly facilitate

estimation.

Key words: PBPK model; nonlinear mixed effect model; parametric method; nonpara-

metric method; MCMC; Prohorov metric.

1 Introduction

In this paper we compare estimation procedures using random effects type techniques with

those using a Bayesian based Monte Carlo Markov Chain (MCMC) approach. In the random

effects type approach we follow the Prohorov Metric Framework (PMF) formulation as devel-

oped by Banks, Bihari and Fitzpatrick in several papers [6, 2, 3]. Early versions of these ideas

were developed in the context of specific size structured partial differential equation population

models [4, 10, 5]. These efforts motivated a formulation in a more general functional analytic

framework for estimation of underlying (absolutely) continuous distributions or measures. The

approach employs approximations with finite convex combinations of Dirac measures which can

be guaranteed to converge as the finite number increases. This PMF formulation is related to,

but distinctively different from, the mixing distribution or nonparametric maximum likelihood

(NPML) formulations of Lindsay [18, 19] and Mallet [20, 26, 12] wherein one uses convex ge-

ometry (Caratheordory based representations) to justify seeking a fixed dimension (the number

of underlying distinct likelihoods used in the maximum likelihood estimator or MLE process)

convex combination of Dirac measures as a (generally non-unique) MLE.

Here we use the PMF formulation in the context of ordinary least squares (OLS) estimators,

primarily to facilitate exposition. An MLE formulation would produce quite similar results with
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respect to both efficiency of approximation and computational times in comparison to MCMC

techniques.

We compare these methods on a typical physiologically based pharmacokinetic (PBPK)

model (chosen simply to illustrate the method behaviors) that is detailed in Section 2. In

Section 3 we outline the MCMC/Gibbs-Metropolis-Hastings algorithm that we use as it is

embodied in the software package MCSim. The proposed PMF method is given in Section 4

along with a brief overview of the Prohorov metric and convergence results. Finally, sample

results from 78 examples (based on a significant computational effort reported in detail in [7])

are provided in Section 5 along with some summary conclusions on our findings in a final section.

2 The PBPK model

In this section we provide an overview of the PBPK model for TCE as developed in [1, 25].

This model utilizes standard physiologically based pharmacokinetic compartmental equations

that are based on assumptions of rapid well-mixing and equilibrium.

Many PBPK models for lipophilic compounds include compartments for tissues such as the

liver, lungs, adipose tissue, richly perfused and poorly perfused tissues. These compartments

often assume a perfusion-limited model, or equivalently, a flow-limited model of disposition,

meaning that the rate of uptake of the compound into the tissue is limited by the blood flow

rate to the tissue rather than the rate of diffusion across the cell membranes [21]. In this case,

the blood flow rate to the tissue is slow compared to the diffusion rate across cell membranes,

so that the blood and tissue are in equilibrium. The equation for transport of a solute through

a constant-volume, well-mixed tissue compartment is an ordinary differential equation of the

form

V
dC

dt
= Q(Cin − Cout),

where V is the volume of the tissue (in liters), C is the concentration of compound inside the

tissue (in mg/liter), Q is the blood flow rate to the tissue (in liters/hour), and Cin and Cout

are the compound concentrations entering and exiting the tissue, respectively.

Here we present a standard PBPK model [21] for TCE with flow-limited compartments for

the kidney, muscle tissue, adipose tissue, brain, liver, venous blood, and remaining non-fat tissue

(see Figure 1). As detailed in [25], we assume uptake via inhalation, with a lung compartment

subdivided into the alveolar space and lung blood subcompartments. TCE is metabolized in
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the liver, which is modeled with Michaelis-Menten kinetics.

In the lung, ventilation is assumed to be continuous with rate Qp, and the vapor in the

alveolar space is assumed to be in rapid equilibrium with the arterial lung blood. The cardiac

output rate is given by Qc and the blood/air partition coefficient is denoted by Pb.

The variables used in the lung compartment include:

Cc = Concentration of TCE in surrounding air

Cx = Concentration of TCE in alveolar space

Ca = Concentration of TCE in arterial blood

Cv = Concentration of TCE in venous blood

Ai = Amount of TCE inhaled

Ax = Amount of TCE exhaled

AL = Amount of TCE in lung.

In this case, the concentration Cx in the alveolar air is related linearly to the concentration

Ca in the arterial blood:

Cx =
Ca

Pb
.

The rate of inhalation of TCE is given by QpCc, while the rate of exhalation is given by

QpCx. Therefore we have the following equations:

dAi

dt
= QpCc

dAx

dt
= QpCx = Qp

Ca

Pb

dAL

dt
= Qp(Cc − Cx) + Qc(Cv − Ca). (1)

Moreover, the assumptions of the model [21] imply that dAL
dt = 0, so by substituting Cx = Ca/Pb

into (1) we obtain

Ca =
QpCc + QcCv

Qc + Qp

Pb

.
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Combining the perfusion-limited compartments with the lung compartment, we obtain

Vf
dCf

dt
= Qf (Ca − Cvf ) (2)

Vv
dCv

dt
= QmCvm + QtCvt + QfCvf + QbrCvbr + QlCvl + QkCvk −QcCv (3)

Ca =
QcCv + QpCc

Qc + Qp

Pb

(4)

Vm
dCm

dt
= Qm(Ca − Cvm) (5)

Vt
dCt

dt
= Qt(Ca − Cvt) (6)

Vbr
dCbr

dt
= Qbr(Ca − Cvbr) (7)

dAam

dt
=

vmaxCvl

kM + Cvl
(8)

Vl
dCl

dt
= Ql(Ca − Cvl)− vmaxCvl

kM + Cvl
(9)

Vk
dCk

dt
= Qk(Ca − Cvk) (10)

dAi

dt
= QpCc (11)

dAx

dt
= QpCx. (12)

The subscripts denote the following specific tissues:

v ⇔ Venous blood

k ⇔ Kidney

m ⇔ Muscle

f ⇔ Fat

br ⇔ Brain

l ⇔ Liver

t ⇔ Remaining non-fat tissue.

Volumes (in liters) of specific tissues are denoted by V , concentrations of TCE (mg/liter) are

denoted by C and flow rates (liters/hour) are denoted by Q, each with subscripts corresponding

to the specific tissue. The concentration of TCE in the air is denoted by Cc, and is a specified

quantity. The variables Cvk, Cvm, Cvf , Cvbr, Cvl and Cvt are the concentrations of TCE leaving

the respective organ and entering the venous blood system. In this case, all compartments
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Figure 1: Schematic of PBPK model for inhaled TCE in Long-Evans rats.

except for the lung are perfusion-limited, so the concentration of TCE leaving each of these

compartments is equal to the concentration of free TCE in that compartment itself [21]. In the

kidney, for example, this implies

Cvk =
Ck

Pk
,

where Ck is the total concentration of TCE inside the kidney compartment and Pk is the

tissue/blood partition coefficient for the kidney.

The amount of TCE metabolized in the liver is denoted by Aam, and has units in mil-

ligrams. Constants in the liver compartmental model include the Michaelis-Menten constant

kM (mg/liters) and the metabolic constant vmax (mg/hour).
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The parameters in the system may be treated as realizations of random variables, especially

when using the model with data from a population of individuals. We refer to the system

given by equation through (1) to (12) as the mathematical model. Since the model describes

concentrations of TCE within the organs and tissues of an individual, the parameter set in the

mathematical model is individual specific. In the following context, we use bold face letters to

represent vectors. We assume we have observations xij , j = 1, . . . , ni, measured at (possibly

different) times tij , j = 1, . . . , ni, for individuals i, i = 1, . . . , n. We represent our data as

D = {(tij ,xij) : i = 1, . . . , n, j = 1, . . . , ni}. We further assume our data are subject to normally

distributed error. Here we generate synthetic data using the mathematical model and then add

simulated measurement error. The data are centered at the solution of the mathematical model

with parameters qi, and have constant variance. In other words, we assume

xij = y(tij ,qi) + εij , εij ∼ N(0, Σε), (13)

where y(·,qi) represents the solution to the system given in the math model for the ith in-

dividual and Σε is the covariance matrix of the distribution of εij . The assumption we make

through equation (13) is part of a statistical model.

Note that the quantity of interest here is the distribution of the qi’s. Depending on the

assumptions made about this distribution, one arrives at either a “parametric approach” or a

“nonparametric approach” as described in the next two sections.

3 The parametric approach

Both mathematicians and statisticians use the term “parametric” when describing approaches

to estimation problems. When both the mathematical model and the statistical model are fully

specified at all levels, the approach is referred to by statisticians as a parametric approach.

Specifically, in the PBPK model, when one assumes a distribution for each individual’s mea-

surement, and also a distribution for the set of individual parameters across a population, one

is using a parametric approach. On the other hand, mathematicians refer to the approach as

parametric when a fully parametrized distribution assumption is made on the parameters to be

estimated. This is independent of the assumption (often omitted or only tacitly made in mathe-

matical treatments) of a distribution for measurement error. Moreover, an implicit assumption

of the errors being identically distributed with a normal distribution having mean zero and

constant variance is tacitly made when the standard approach of ordinary least squares is taken
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and assumed equivalent to an MLE. Of course, one can use the OLS without the normality

assumption (and then it will not be equivalent to the MLE).

A parametric method is appropriate when one is reasonably confident about the general

parameter distribution structure in the problem. In such situations, this provides the most

efficient way for estimation in that it takes full advantage of knowledge of the distribution

structure. However, when a pre-assumed distribution is incorrect, this often leads to serious

difficulties. In the best case scenario, the final estimate produces a model that fits the data

very poorly. In a more serious outcome, the assumed distribution may produce a reasonable

model fit to data even when it is an incorrect distribution (see [9, 25] for examples).

Once a model is specified, one may rely on several different methods to solve the problem and

estimate the desired parameters. One of the most widely used methods is the MCMC method

[14]. MCMC techniques produce parameter estimates through generation of random samples

of the sought after distribution. They are typically used in cases where the distribution does

not have a closed form; this often occurs for posterior distributions when a Bayesian approach

is taken.

We explain the MCMC approach through a simple example. In this example, we assume

for ease in explanation that the parameter of interest q is, in fact, a scalar which we denote

by q. Moreover we measure only one quantity, for example, one component of the vector

solution of (1)–(12) above. Hence, the measurement x is also a scalar, which we denote by

x. The measurement error ε is thus a scalar and will be denoted by ε. Suppose we have k

observations (t1, x1), (t2, x2), . . . , (tk, xk) associated with y(t1, q), . . . , y(tk, q) and measurement

errors ε1, . . . , εk respectively, on a single individual with dynamics given by (1)–(12). We then

have

xj = y(tj , q) + εj , j = 1, 2, . . . , k,

where the εj ’s are assumed independent and to follow a normal distribution N(0, σ2). We wish

to estimate q and σ2 using this data.

The Bayesian approach involves considering q and σ2 as random variables. Since we know

very little a priori about q and σ2, we can reasonably collect our knowledge about them in a

very flat distribution, which is called a “prior distribution”. After we collect and use the data

D = {(tj , xj), j = 1, . . . , k)} to improve our knowledge, we would expect to obtain a “posterior

distribution” which would (hopefully) reveal more information about the two parameters. We
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formalize this idea in the equation

π(q, σ2|D) =
π(q, σ2)L(q, σ2|D)∫

Ω π(q, σ2)L(q, σ2|D)dqdσ2

∝ π(q, σ2)Πk
j=1

1√
2πσ2

exp(
(xj − y(tj , q))2

−2σ2
). (14)

Here, π(q, σ2) is the prior, π(q, σ2|D) is the posterior, L is the likelihood, and Ω is the set of

possible parameter values.

If, for example, we assume a prior of π(q, σ2) = 1
σ2 exp(−q2), we obtain

π(q, σ2|D) ∝ exp(−q2)
(σ2)(n+2)/2

exp(− 1
2σ2

k∑

j=1

(xj − y(tj , q))2). (15)

While equation (15) is not readily familiar as a joint density function of q and σ2, the

conditional density functions of q and σ2 may be familiar in special cases. For example, if

y(t, q) = tq, they are respectively the normal and inverse Gamma distributions. In such a

fortunate situation, we can generate the corresponding random samples of a joint distribution

by generating random samples of the conditional distribution for each random variable. This

technique is called Gibbs sampling [14].

The steps in the algorithm are:

1. Set i = 0 and give an initial guess for a sample (q0, (σ2)0).

2. Generate a random sample (σ2)i+1 from the conditional distribution of σ2 conditioned on

the last generated value qi of q.

3. Generate a random sample qi+1 from the conditional distribution of q conditioned on the

last generated value (σ2)i+1 of σ2.

4. If convergence is obtained, stop. Otherwise, set i = i + 1 and return to step 2.

In the general case of a vector parameter q = (q1, . . . , qm), we must estimate the joint

distribution of (q1, q2, . . . , qm). The algorithm above is then carried out component-wise. That

is, step 3 above is replaced by

3′. Draw a sample qi+1
1 from the distribution for q1 conditioned on qi

2, . . . , q
i
m.

Draw a sample qi+1
2 from the distribution for q2 conditioned on qi+1

1 , qi
3, . . . , q

i
m.

Draw a sample qi+1
3 from the distribution for q3 conditioned on qi+1

1 , qi+1
2 , qi

4, . . . , q
i
m.

.
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.

.

Draw a sample qi+1
m from the distribution for qm conditioned on qi+1

1 , . . . , qi+1
m−1.

The resulting new draw of the joint distribution is then (qi+1
1 , qi+1

2 , . . . , qi+1
m ).

A discussion on convergence issues for the Gibbs algorithm is given in [11]. In general,

many investigators discard the first 103 to 104 samples (this is called the “burn-in” cycle and

practice varies widely on the number of discards), retaining only the last sample to be used as

an “initial” sample for a larger number of steps of the algorithm. It is then expected that the

resulting samples will be very much like the “real” samples following the joint distribution.

If at least one of the conditional distributions is not of a form from which one knows how

to generate samples, for example y(t, q) = eqt in the above example, one usually applies the

Metropolis-Hastings sampling algorithm [22, 15], which we briefly describe next.

Denote by π(v) the density function from which we wish to sample (in the example above,

v = (q, σ2)). To carry out the Metropolis-Hastings algorithm, we first must propose a parametrized

density function of the same random variable v, say p(v, γ), where here γ is a parameter. In

each step of the Metropolis-Hastings algorithm, we generate samples from p(v, γ), and accept

it as a new sample with a certain probability. The steps are:

1. Set i = 0 and give an initial sample guess v0.

2. Generate a random sample ṽ from p(v, vi).

3. Calculate r = min( π(ṽ)p(vi,ṽ)
π(vi)p(ṽ,vi)

, 1).

4. Generate a random sample u from a uniform distribution U(0, 1).

5. Accept ṽ as vi+1 if u ≤ r, or

Accept vi as vi+1 otherwise.

6. If convergence is obtained, stop. Otherwise, set i = i + 1 and go to step 2.

Convergence of the Metropolis-Hastings algorithm is discussed in [27] using the theory of

irreducible Markov chains [24]. In practice, one often chooses the proposal density p to be

normal with mean vi to obtain vi+1.

In our example above, the conditional distribution of σ2 is still an inverse Gamma distribu-

tion independent of the form of y. Thus we can still use Gibbs sampling to generate samples
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for σ2, while each time we sample from the conditional distribution of q, we may apply the

Metropolis-Hastings algorithm. Such a technique of embedding the Metropolis-Hastings sam-

pling algorithm in each step of Gibbs sampling is frequently used in practice and is called the

hybrid Gibbs-Metropolis-Hastings algorithm [14].

We note that the v in the Metropolis-Hastings algorithm as well as the q in the Gibbs

sampling algorithm can be vectors.

The MCMC approach provides one with a way to deal with distributions that are very

complex in form. It facilitates some estimations that are otherwise computationally impossible.

We return finally to the PBPK model of Section 2 that is the focus of our efforts in this

paper. In order to pursue a parametric approach, one needs to make further assumptions on

the distribution of the q’s in the population from which we sample. For this, we assume that

for a given sample {q1, . . . , qn} from n individuals, we have

qi ∼ N(µ,Σ). (16)

This yields a so-called hierarchical model, in that we have a model at the individual level (given

by (1)–(12)) and one at the population level (given by (16)). MCMC methods on hierarchical

models have been explored by numerous investigators, see for example [17, 28]. Under the full

mathematical and statistical models given through equations (1)–(12), (13) and (16), we can

derive the posterior distribution of the parameters µ,Σε, Σ given by

π(µ,Σ, Σε, q1, . . . , qn|D) ∝ π(µ,Σε, Σ)Πn
i=1Π

ni
j=1p(xij |qi, Σε)Πn

i=1p(qi|µ,Σ).

Note that in this case we cannot write out the explicit form of p(xij |qi, Σε) because the mean

y(tij , qi) of the distribution is given implicitly through the mathematical model in equations

(1)–(12). However, the Metropolis-Hastings algorithm only requires the ability to evaluate each

p(xij |qi, Σε) and hence each y(tij , qi) for a proposed qi. Therefore, we only need to solve the

differential equation for y corresponding to the qi’s in each Metropolis-Hastings step. Using

MCMC in problems where the mean function is implicitly given has been explored in the inverse

problem literature, see for example [23, 16].

The MCMC software MCSim [13] is particularly designed for such problems. To our knowl-

edge, MCSim is the only software currently available that handles implicit mean functions given

through ODEs. This is the software we use in our simulation study for the parametric approach.
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4 A nonparametric approach in the PMF

The Prohorov Metric Framework (PMF) approach focuses on estimating the distribution for the

parameters q directly from the data D = {(tij , xij)} without making the a priori assumption

(16). One could again use an MLE formulation. However, with the assumptions we make on

the measurement errors εij in (13), i.e., independent, identically distributed normal, one can

equivalently use an OLS formulation as we do here.

We assume as before that the model parameters q are realizations of a random variable with

population probability distribution P , where P belongs to some probability space Q that may

be infinite dimensional. We define the set P(Q) of all probability distributions on an admissible

parameter space Q and seek a probability distribution function P ∗ that minimizes the objective

function

J(P, D) =
1
n

n∑

i=1

ni∑

j=1

|E[y(tij , q)|P ]− xij |2 (17)

over Q ⊂ P(Q), where the expected values are given by

E[y(tij , q)|P ] =
∫

Q
y(tij , q)dP (q). (18)

For simplicity we often choose Q = P(Q), but this is not essential and one may readily restrict

the family of admissible distributions in certain formulations.

Depending on the choice of the set Q ⊂ P(Q) of probability distributions, this method

may be implemented with pre-determined “prior” probability distributions (as with the Monte

Carlo method), or it may be used without the pre-specification of a particular probability

distribution. For the case when there is a reasonable expectation that a parameter varies across

the population in a manner similar to a given probability distribution, the setQ can be chosen as

the space of those parametrized distribution functions (e.g., q̃ = (µ,Σ), the normal distribution

p(q|µ,Σ) of (16)) defined over admissible parameter sets Q̃. For this type of formulation, the

distribution functions are uniquely determined by their parameterizations q̃ (e.g., mean and

variance), and hence may be estimated by minimizing (17) where now the expectations in (18)

are given by

E[y(tij , q)|P ] =
∫

Q
y(tij , q)p(q|µ,Σ)dq,

and the minimization in (17) is now over all admissible (µ,Σ) in some specified parameter space

Q̃.

If it is not possible to predict the expected form of the probability distributions a priori,

this method also may be used without the specification of prior distributions. In this case,
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Q = P(Q) may be chosen as the space of all probability distributions defined on Q. For

computational purposes, the estimation problem may then be implemented using finite dimen-

sional approximations to the original infinite dimensional problem. First we define the infinite

dimensional set

P0(Q) ≡ {P ∈ P(Q) : P =
l∑

k=1

pk∆qk
, l ∈ N+, qk ∈ Q0, pk ≥ 0,

l∑

k=1

pk = 1}, (19)

where Q0 = {qk}∞k=1 is a given countable, dense subset of the parameter space Q and ∆qk
is the

Dirac delta distribution with atom at qk ∈ Q. In other words, P0(Q) is the set of probability

distributions on Q that have finite support in Q0. We then define the finite dimensional set

PM = {PM ∈ P0(Q) : PM =
∑M

k=0 pk∆qk
}, which we use to define a family of finite dimensional

approximation problems. That is, for fixed {q0, q1, . . . , qM} in Q0 with PM =
∑M

k=0 pk∆qk
∈

PM , we minimize the objective function

J(PM , D) =
1
n

n∑

i=1

ni∑

j=1

|E[y(tij , q)|PM ]− xij |2

=
1
n

n∑

i=1

ni∑

j=1

|
M∑

k=0

y(tij , qk)pk − xij |2 (20)

over the space PM . These precise definitions lead to a well-posed estimation problem, as we

shall discuss below. Note that the problem of minimizing the objective function (20) corre-

sponds to solving a constrained quadratic programming problem for p = (p0, p1, . . . , pM ) with

the constraints pk ≥ 0,
∑M

k=0 pk = 1. There currently exist a number of acceptable computa-

tional methods to efficiently solve such finite dimensional approximating problems. Using the

Prohorov metric and well-known results from probability theory, one can establish a theoretical

framework (including well-posedness, convergence of approximations and method stability) for

these probability-based parameter estimation problems.

The Prohorov metric ρ is defined on the space P(Q) of probability measures on the Borel

subsets of Q, where Q is a complete metric space with metric d. The definition of ρ is not very

intuitive and will not be given here (see instead [3]). Rather we point out that convergence

in the Prohorov metric is equivalent to weak convergence of measures or distributions (not

densities). That is, ρ(Pk, P ) → 0 is equivalent to
∫
Q f(q)dPk(q) →

∫
Q f(q)dP (q) for all bounded

and uniformly continuous functions f : Q → R. It is also well known that the metric space

(P(Q), ρ) is complete, and furthermore, (P(Q), ρ) is compact for all compact sets Q.

Banks and Bihari [3] addressed theoretical issues related to estimation problems involving

unknown measures. Employing the Prohorov metric, they studied convergence properties of
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sequences of probability distributions in P(Q). These results were then applied to a sequence

of minimizers for finite dimensional approximations to the estimation problem for (20). Here

we summarize their findings as they relate to the inverse problems of interest in this paper.

As discussed in [3], it follows that if the mapping q → y(tij , q) is continuous, then the con-

vergence ρ(Pk, P ) → 0 in the Prohorov metric is equivalent to E[y(tij , q)|Pk] → E[y(tij , q)|P ],

and hence the map P → J(P, D) of (17) is continuous in the ρ topology. Moreover, if the

space Q is compact, we have that (P(Q), ρ) is a compact metric space, which along with the

continuity of the map P → J(P,D) guarantees the existence of a minimizer over P(Q) for the

estimation problem associated with (17).

In addition to establishing the existence of a solution for the inverse problem for (17),

Banks and Bihari developed results related to method stability for this problem. Using finite

dimensional approximation techniques, they show in Theorem 4.1 of [3] that the solutions for

minimizing (17) depend continuously on the data (see [3] for a complete discussion). Moreover,

any sequence of minimizers of the finite dimensional problems for (20) converge in the Prohorov

metric to a minimizer for the original infinite dimensional problem for (17). This theorem makes

use of the result that the set P0(Q) as in (19) is dense in the space P(Q) with respect to the

Prohorov metric ρ.

In demonstrating the convergence of solutions (we note that PMF convergence guarantees

convergence in the distributions; the densities may not converge at all-see [2, 3, 5, 9, 10]) for

the family of finite dimensional problems for (20), the result established in Theorem 4.1 of [3]

also provides a computational framework for solving the general parameter estimation problem

for (17) without specifying prior probability distributions. Using discrete Dirac delta measures,

for sufficiently large M we may approximate
∫

Q
y(t, q)dP (q) ≈

∫

Q

M∑

k=0

y(t, q)d∆qk
(q) =

M∑

k=0

y(t, qk)pk,

which then allows us to approximate the infinite dimensional inverse problem for (17) by the

finite dimensional approximation. Alternative approximations in terms of splines (piecewise

linear for (20), as well as higher order splines) can also be used as explained in [8].

5 Simulation study

In this section we present results for the nonparametric and parametric parameter estimation

methods described in Section 3 and 4 when applied to the TCE PBPK model outlined in Section
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2. For this example, we use the two parameter estimation methods to estimate probability

distributions for the fat partition coefficient Pf , which is expected to vary in value across

a population of individuals. All other parameters were set at those values given in [1, 25].

Results for the two methods are compared using various types of simulated data that are based

on different probability distributions over various lengths of time. In particular, the simulated

data include concentrations in time from both the blood and fat tissue compartments that are

generated using the PBPK model (1)–(12) with various levels of noise added.

In the simulation study, we generate data for concentrations of TCE in venous blood and fat,

use the two methods mentioned with this data to recover the partition coefficient for fat Pf and

compare the results. We generate data for n = 10 individuals, each with ni = 31 observations,

equally spaced from time 0 to 2 hours and 0 to 5 hours, respectively. We add different levels

and types of noise to the concentrations. The relative noise levels are 1%, 5% and 10%, using a

normal distribution and using a uniform distribution, respectively. Note that this means that

for normally distributed noise, we use .0033, .0167 and .0333 as the standard deviation, while for

uniformly distributed noise, we bound the value to be within ±1%,±5%,±10%, respectively. In

a set of examples, we seek distributions for Pf with sets of data generated by a delta function,

a normal and a mixture of two normals, respectively.

We estimate Pf using the parametric approach and the nonparametric approach. We use

the MCMC method implemented in MCSim for the parametric approach, assuming a model in

which the distribution of the Pfi ’s are normally distributed with unknown mean and variance.

The priors we assume for the mean and variance of the Pfi ’s are uniform from 1 to 100 and

inverse-Gamma with coefficients 0.5, 0.5 respectively. The same inverse gamma priors are used

for the noise variances. We use the PMF method implemented in Matlab for the nonparametric

approach.

Results from 78 different example calculations are given in [7]. We present several of these

here and summarize our overall findings. First we present results from an example employing

simulated data generated with a Dirac delta function as the “true” distribution. In Figures 2

and 3 we compare the parametric and the nonparametric results in the presence of 10% relative

normal noise added to the “measurements”. These results are typical of our findings with this

example, with the results being relatively unchanged whether we use “data” from [0, 2] hours

or from [0, 5] hours. As might be expected, the parametric method produces normal estimates

with the variances increasing as the noise level increases. Moreover, the posterior estimates

have more variance (more than twice as much) when uniformly distributed noise is added to

14



the data in place of normally distributed noise.

Figures 4 and 5 depict typical findings when the data generating distribution is a unimodal

normal distribution; in these examples the data have 5% relative normally distributed noise in

the “measurements”. Again, the results are essentially insensitive to whether the observations

are taken over [0, 2] vs. [0, 5] hours, or whether normally or uniformly distributed noise is present

in the data. Note that in the top left of Figure 5, the data generating density function is the

same as in Figure 4 (with a maximum of approximately .055 while the estimated distribution

has atoms with probabilities 0.02, 0.98). In the scale necessary to depict both graphs, the

generating density is very small. Similar remarks hold for Figure 7 (atoms with probability

0.49, 0.51), Figure 8 (probabilities .16, .56 and several smaller) and Figure 9 (probabilities .39,

.61). Recall also that density convergence is not guaranteed in the PMF approach.

In Figures 6 through 9 we present a sample of results using the two methods with data

generated using a bimodal normal distribution. For the parametric method, there is little

difference in the results whether one adds small (1%) or large (10%) relative noise to the data,

whether it is normally or uniformly distributed noise, and whether one takes observations on

[0, 2] hours or [0, 5] hours. The results obtained using the parametric method in all these cases

do not differ substantially from those depicted in Figure 6. However, increased levels of noise

in the data do degrade the ability of the nonparametric method to yield results that clearly

suggest the presence of a bimodal distribution as the “true” distribution (compare Figures 7

and 8). This can be partially compensated for by taking data over a longer period (compare

Figures 8 and 9 and see also the examples in [9]). However, it is rather clear that a smoother

family of approximations (for example, piecewise linear or cubic splines as mentioned in Section

4 and discussed in [8]) would be more appropriate than the sum of Dirac approximations of

(19) in examples such as these wherein one is attempting to estimate a distribution possessing

a smooth density function.

In summarizing, we see that for the normal distribution examples, the parametric method

provides much better results than the nonparametric method. But as soon as the true distribu-

tion departs from normality, the parametric method is either inferior or fails. In the mixture of

normals example, the parametric method can recover a mean and variance but not the bimodal

character of the true distribution. However, the nonparametric method is able to detect that

there are two modes in the distribution.

We note with interest that although the estimated distribution is far from true in the

parametric approach when an incorrect model is specified, the estimation of the mean and

15



variance of the unknown distribution is, in fact, not affected very much by the choice of the

model. This has been observed by other investigators. Whether it is true that the estimation of

the first two moments of the population distribution is insensitive to the choice of the population

model remains an interesting and challenging question.
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Figure 2: Parametric method. The generating density is a Dirac delta function with atom

at 26.26; 10% normal measurement noise. Top left: The estimated density function. Top

right: The estimated distribution function. Bottom left: The estimated time course plots of

concentration in blood. Bottom right: The estimated time course plots of concentration in

fat. Individual data are plotted using dots, the average of the observations is represented using

circles in the bottom figures.
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Figure 3: Nonparametric method. The generating density is a Dirac delta function with atom

at 26.26; 10% normal measurement noise. Top left: The estimated (small dots) and the data-

generating (open circle) density functions. Top right: The estimated (small dots, indistin-

guishable except at the jump) and the data-generating (step function with one discontinuity)

distribution functions. Bottom left: The estimated (dotted line) and the data-generating (solid

line) time course plots of concentration in blood. Bottom right: The estimated (dotted line)

and the data-generating (solid line) time course plots of concentration in fat. Individual data

are plotted using dots, the average of the observations is represented using circles in the bottom

figures.
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Figure 4: Parametric method. The generating density is a normal distribution with mean 26.26

and variance 49; 5% normal measurement noise. Top left: The estimated (solid line) and the

data-generating (dashed line) density functions. Top right: The estimated (solid line) and the

data-generating (dashed line) distribution functions. Bottom left: The estimated (solid line)

and the data-generating (dashed line) time course plots of concentration in blood. Bottom

right: The estimated (solid line) and the data-generating (dashed line) time course plots of

concentration in fat. Individual data are plotted using dots, the average of the observations is

represented using circles in the bottom figures.
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Figure 5: Nonparametric method. The generating density is a normal distribution with mean

26.26 and variance 49; 5% normal measurement noise. Top left: The estimated (small dots) and

the data-generating (solid line) density functions. Top right: The estimated (broken segments)

and the data-generating (solid line) distribution functions. Bottom left: The estimated (dotted

line) and the data-generating (solid line) time course plots of concentration in blood. Bottom

right: The estimated (dotted line) and the data-generating (solid line) time course plots of

concentration in fat. Individual data are plotted using dots, the average of the observations is

represented using circles in the bottom figures.
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Figure 6: Parametric method. The generating density is a bimodal formed by a mixture of two

normal distributions, each with mean and variance (26.26, 49) and (50,49) respectively; 10%

normal measurement noise. Top left: The estimated (solid line) and the data-generating (dashed

line) density functions. Top right: The estimated (solid line) and the data-generating (dashed

line) distribution functions. Bottom left: The estimated (solid line) and the data-generating

(dashed line) time course plots of concentration in blood. Bottom right: The estimated (solid

line) and the data-generating (dashed line) time course plots of concentration in fat. Individual

data are plotted using dots, the average of the observations is represented using circles in the

bottom figures.
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Figure 7: Nonparametric method. The generating density is a bimodal formed by a mixture

of two normal distributions, each with mean and variance (26.26, 49) and (50,49) respectively;

1% normal measurement noise. Top left: The estimated (small dots) and the data-generating

(solid line) density functions. Top right: The estimated (broken segments) and the data-

generating (solid line) distribution functions. Bottom left: The estimated (dotted line) and the

data-generating (solid line) time course plots of concentration in blood. Bottom right: The

estimated (dotted line) and the data-generating (solid line) time course plots of concentration

in fat. Individual data are plotted using dots, the average of the observations is represented

using circles in the bottom figures.
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Figure 8: Nonparametric method. The generating density is a bimodal formed by a mixture

of two normal distributions, each with mean and variance (26.26, 49) and (50,49) respectively;

10% normal measurement noise. Top left: The estimated (small dots) and the data-generating

(solid line) density functions . Top right: The estimated (broken segments) and the data-

generating (solid line) distribution functions. Bottom left: The estimated (dotted line) and the

data-generating (solid line) time course plots of concentration in blood. Bottom right: The

estimated (dotted line) and the data-generating (solid line) time course plots of concentration

in fat. Individual data are plotted using dots, the average of the observations is represented

using circles in the bottom figures.
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Figure 9: Nonparametric method. The generating density is a bimodal formed by a mixture

of two normal distributions, each with mean and variance (26.26, 49) and (50,49) respectively;

10% normal measurement noise. Top left: The estimated (small dots) and the data-generating

(solid line) density functions. Top right: The estimated (broken segments) and the data-

generating (solid line) distribution functions. Bottom left: The estimated (dotted line) and the

data-generating (solid line) time course plots of concentration in blood. Bottom right: The

estimated (dotted line) and the data-generating (solid line) time course plots of concentration

in fat. Individual data are plotted using dots, the average of the observations is represented

using circles in the bottom figures.
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6 Conclusions

In this paper we have compared an MCMC parametric approach to a nonparametric method

for the estimation of distributions in a hierarchical setting. Extensive computations using

simulated data generated with a number of different underlying known distributions (Dirac

delta, unimodal normal and bimodal mixture of normals) were carried out with a typical PBPK

model for individuals. Based on the computations summarized here and those found in [9], we

can make some comments about the advantages and disadvantages of the two methods.

We first note that the parametric method has the following advantages: (i) It is relatively

easy to incorporate prior knowledge about uncertainty directly into an MCMC approach; (ii)

Population level structures are readily incorporated onto individual level models in a hierar-

chical setting; (iii) If the prior distribution assumptions are accurate, the method generally

provides very good fits to the data and the underlying uncertainty in the data. On the other

hand, disadvantages can be substantial and include: (i) One must impose an underlying struc-

ture at the population level, which, because of the criticality to the success of the method, can

provide completely misleading results if incorrectly chosen; (ii) It is not always easy to recognize

when an incorrect prior assumption has led to an incorrect posterior estimate, and thus one

may readily interpret convergence to the incorrect distribution as a successful estimation; (iii)

Implementation of MCMC is not trivial when the mathematical model is specified implicitly

through differential equations. MCSim does have an ODE solver incorporated in the software

but if the system dynamics are given by a PDE model, semi-discretization to an ODE approx-

imating system generally leads to massive memory difficulties; (iv) Finally, the computations

using MCMC can be quite time consuming. For example, in comparing our examples in a typi-

cal MCMC parametric and a typical PMF nonparametric calculation (see [7]), the results with

MCSim (for only 1000 samples generated) required 466 seconds while the corresponding PMF

calculations took only 215 seconds. This time requirement for MCMC is a serious drawback in

examples with more complex system dynamics.

Advantages for the nonparametric PMF approach include: (i) One is not required to provide

an initial distribution structure at the population level; (ii) The method provides estimation

capabilities even when the sought-after distribution is not similar to any known distribution;

(iii) Implementation even in the context of a hierarchical setting leads to a standard constrained

quadratic programming problem for which excellent software is widely available; (iv) If one does

impose a prior distributional structure, the method, as described in Section 4, readily becomes
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a parametric method that is computationally efficient; (v) If one suspects a relatively smooth

underlying distribution, higher order spline methods for approximations can be used in place

of the Dirac approximations introduced in Section 4. This flexibility typically provides better

estimation results in such problems. All this being said, the method can be computationally

challenging and can fail to converge if certain ill-conditioning is present in the associated ap-

proximating quadratic programming problems. Moreover, one is not guaranteed convergence

of the approximating densities in any specific topology (or perhaps none at all).

The problems we are addressing are quite difficult when multiple parameters (distributions)

are to be estimated. In such cases, both approaches can encounter serious computational

difficulties. There are many open and interesting theoretical and computational questions yet

to be investigated in this area of research.
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pages 353–371. Birkhäuser, Boston, 1999.

[6] H. T. Banks and B. G. Fitzpatrick. Estimation of growth rate distributions in size-

structured population models. Quart. Appl. Math., 49:215–235, 1991.

[7] H. T. Banks, Y. Ma, and L. K. Potter. A simulation-based comparison between parametric

and nonparametric estimation methods in PBPK models. CRSC-TR04-25, June, 2004.

[8] H. T. Banks and G. A. Pinter. A probabilistic multiscale approach to hysteresis in shear

wave propagation in biotissue. CRSC-TR04-03, January, 2004. SIAM J. Multiscale Mod-

eling and Simulation, submitted.

[9] H. T. Banks and L. K. Potter. Probabilistic methods for addressing uncertainty and

variability in biological models: Application to a toxicokinetic model. CRSC-TR02-27,

September, 2002. Math. Biosci., submitted.

[10] H. T. Banks, L. K. Potter, and Y. Zhang. Use of aggregate size-structured population data

to estimate distribution of growth rates. Memoria 8th Int. Congress on Biomathematics,

Panama ’97, August, pages 3–12, 1997.

[11] J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of

Royal Statistical Society, Series B, 55:25–37, 1974.

[12] M. Davidian and D. Giltinan. Nonlinear Models for Repeated Measurement Data. Chapman

& Hall, London, 1998.

[13] A. Gelman, F. Bois, and J. Jiang. Physiological pharmacokinetic analysis using popu-

lation modeling and informative prior distributions. Journal of the American Statistical

Association, 91:1400–1412, 1996.

[14] W. Gilks, S. Richardson, and D. Spiegelhalter. Markov Chain Monte Carlo In Practice.

Chapman & Hall/CRC, New York, 1996.

[15] W. K. Hastings. Monte Carlo sampling methods using Markov Chains and their applica-

tions. Biometrika, 57:97–109, 1970.

[16] J. Kaipio, V. Kolehmainen, E. Somersalo, and M. Vauhkonen. Statistical inversion and

Monte Carlo sampling methods in electrical impedance tomography. Inverse Problems,

16:1487–1522, 2000.

27



[17] N. Lange, B. Carlin, and A. Gelfand. Hierarchical Bayes models for the progression of

HIV infection using longitudinal CD4 T-cell numbers. Journal of American Statistical

Association, 87:615–626, 1992.

[18] B. G. Lindsey. The geometry of mixture likelihoods: a general theory. Annals of Statistics,

11:86–94, 1983.

[19] B. G. Lindsey. Mixture Models: Theory, Geometry and Applications, volume 5 of NSF-

CBMS Regional Conf. Series in Prob. and Statistics. Inst. Math. Stat, Haywood, CA,

1995.

[20] A. Mallet. A maximum likelihood estimation method for random coefficient regression

models. Biometrika, 73:645–656, 1986.

[21] M. A. Medinsky and C. D. Klaassen. Toxicokinetics. Casarett and Doull’s Toxicology:

The Basic Science of Poisons. McGraw-Hill, Health Professions Division, New York, 5th

edition, 1996.

[22] N. Metropolis, A. W. Rosenbluth, M. M. Rosenbluth, A. H. Teller, and E. Tellet. Equations

of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–

1091, 1953.

[23] K. Mosegaard and M. Sambridge. Monte Carlo analysis of inverse problems. Inverse

Problems, 18:R29–R54, 2002.

[24] E. Nummelin. General Irreducible Markov Chains and Non-Negative Operators. Cambridge

University Press, Cambridge, 1984.

[25] L. K. Potter. Physiologically based pharmacokinetic models for the systemic transport of

trichloroethylene. PhD thesis, North Carolina State University, Raleigh, NC, August 2001.

www.lib.ncsu.edu.

[26] A. Schumitzky. The nonparametric maximum likelihood approach to pharmacokinetic

population analysis. Proceedings of the Western Simulation Multiconference-Simulation in

Health Care, Society for Computer Simulation, 1993.

[27] L. Tierney. Markov Chains for exploring posterior distributions. Annals of Statistics,

22:1701–1762, 1970.

28



[28] J. Wakefield. The Baysian analysis of population pharmacokinetic models. Journal of

American Statistical Association, 91:62–72, 1996.

29


